
Always backup your WebLink project before working with these sample scripts

You can either import the example page into an existing project or create a new,
empty project in which to experiment

In this exercise we will import sample scripts for PNG animation and modulation
into the Global Functions tab. Changes to global functions should be done very
carefully, even small errors in this area can be very difficult to debug.

You can alternately copy/paste these example scripts into the Local Functions tab
of each web page where animation or modulation of PNG graphics is taking place

The advantage of importing the sample scripts into Global Functions is you only
do this once and the sample scripts are available on any existing or new web
page in the project

Sample WebLink PNG Animation and Modulation Scripts

First we will download a working example of PNG animation and run it in your
WebLink to make sure everything we need is in place

After that we will create a new web page with a 2-state PNG animation showing a
Fan that spins, depending on the value of a Binary output on an ASIC/2 controller

The we will create an image of a Damper modulating, and finally we will make a
Cooling Coil graphic modulate

If you you run into any trouble with the examples or need additional examples
please email support@asicontrols.com or contact us at 925 866 8808, option 3

mailto:support@asicontrols.com

Import 2 files you will need directly from the hyperlinks shown down below

Put the WEB file in “c:\program files\asi controls\weblink\system.3\” folder

The GFX file goes in “c:\program files\asi controls\weblink\system.3\HTML\images\”

file:///c:/program
file:///c:/program

Start WebLink

If animationsample2.web was copied to “c:\program files\asi controls\weblink\system.3\”
folder then you should see the new screen with Web View ID = AnimationSample2

file:///c:/program

Step 4

You must change Project Title to “Sample” in order to work with the Sample GFX graphics

Open the new AnimationSample2 screen. You should see a fan graphic. If you see a
blank image the project title is probably wrong. Note the S in Sample must be upper case

Open the Properties for the page by double-clicking somewhere in the grey
background area, or by right-clicking and selected Edit Properties.

Copy the sample scripts directly from the Notes area below

In WebLink, open the screen Properties and go to either the LOCAL or GLOBAL Functions
tab. If the tab already contains script scroll down and place the cursor below all existing text

Enter Control-V to paste the text from Windows clipboard into the WebLink editor

You should see the tail end of the pasted text, like above. Click OK to save changes

Click the green arrow to start a web session

Click the Start button to see the fan rotating, click Reverse to see the fan reverse direction

This exercise demonstrates the basic elements are in place for PNG animation before we
attempt to create animations from scratch

Next we add a screen to do a new fan animation, and show a modulating damper and coil

Save the Sample screen and return to the main WebLink console

Create a new web screen (web view) named Sample2 and open it for editing

Open the OPC tag browser and drag a tag for an ASIC/2 clock (CLK) object Present TIme
value onto the screen. The element displaying the time will have ID of “tag0”

This tag is a convenience item, the time ticking over verifies that communications are OK

Next, insert an image onto the web screen. Note down that this new image is “image0”

Open PNG_Animation_Demo.GFX that you downloaded earlier, select “MainFans_0.png”
from the pop-up list. Note down that there are 3 images total for this fan

TIP: highlight from start of image name to just before the under-bar (“_”) near the end of
the line, not including under-bar. Hit Control-C to copy highlighted text to clipboard for later

Click OK to save the changes

Create a variable “samplefan2” on the LOCAL FUNCTIONS tab by typing:

var samplefan2;
Go to the ON SHOW tab

Enter the following text. Remember that earlier we note “image0” as the name of the new
image we are going to animate:

samplefan2 = new AnimatePNG(image0, '

Hit Control-V to paste the text from the clipboard. This text provides the path to the images
that WebLink will cycle through to create an animation effect

Next, enter 3 as the third argument to the AnimatePNG function because this is the number
of images we noted down earlier

To create the animation effect WebLink will briefly show MainFans_0.png, then show
MainFans_1.png, then MainFans_2.png, then cycle back to MainFans_0.png

The fourth and last argument to the AnimatePNG function tells WebLink the number of
milliseconds to display each image in the series before cycling to the next image, we use 100

Complete line:

 samplefan2 = new AnimatePNG(image0, 'PNG_Animation_Demo.gfx?img=MainFans',3,100);

Click OK to save changes

Open the OPC tag browser. Choose a spare Binary Output (OUT-3) that you can override on
and off to watch the animation go on/off.

Drag OutputValue onto the screen, the new “tag1” element is initially labeled “Output Value:”

Choose “Display Value as Binary String”, with “Off” for zero and “On” for non-zero values

Enter a label “Fan On/Off:”

Click the ON UPDATE button in the top right corner so we can add some javascript that will
be executed each time the output value changes

Note that the ID for the
element we just
dragged onto the
screen is “tag1”

We will need this in
our javascript

if (tag1.innerText == "On")
 samplefan2.start();
else
 samplefan2.stop();

Enter the following javascript, then click OK to save changes

Click the green arrow in WebLink to start a web session.

You should see the fan start and stop as you override the output on and off in Expert

Add a second image to the screen to do Damper modulation, this will be “image1”. Select
WallDampers_0.png image from the GFX library as the initial image

Use the OPC tag browser to pull “tag2” on screen with the CLK.PresentTime-Sec value to
display seconds ticking over, place the tag above the damper image

Add an image (“image2”) for Coil modulation, use the CoolCoil_ series from the PNG library.
Add “tag3” to display CLK.PresentTime-Sec value and place the tag above the cooling coil

Open data2 properties, click the ON UPDATE button, copy/paste the following script:

 var curvalue = tag2.innerText;
 ModulatePNG('images/PNG_Animation_Demo.gfx?img=WallDampers_',
 image1 ,60, 10, curvalue, false);
Click OK to save changes

Note the ModulatePNG function is passed 6 arguments, in order these are:
- the root path for the images
- the element (image1, image2, etc.) that holds the image being modulated
- the maximum value that will be read (minimum is always zero)
- the number of images to use in the modulation (X images, numbered 0 through X-1)
- the current value, which must be within the range of 0 to maximum
- whether to reverse the order of modulation, a true/false parameter

Remember that Javascript is case-sensitive, so ModulatePNG is not the same as
modulatepng (and using the latter spelling would generate an error in our example)

In javascript it is usually best to use single quotes to encapsulate string values rather than
double-quotes, especially if you are copying/pasting from/to an editor other than WebLink

You can wrap lines of script by using the Enter or Return key and then using spaces to
align the text (if desired)

Do not use tabs to align code in WebLink, use only spaces

function ModulatePNG(rootImagePath, imageobj, maximum, image_count, curvalue, reverse) {
curvalue = parseFloat(curvalue); //strip any non-numeric characters such as Units Label
var step_size = maximum / image_count; // calculate percent of total value for each image
if (reverse) {

for (i = 0; i < image_count; i++) { // loop UP from something_0.png to something_X.png
if (curvalue < step_size * i) {

imageobj.src = rootImagePath + i + ".png";
break;

}
}

} else {
for (i = 0; i < image_count; i++) { // loop DOWN from something_0.png to something_X.png

if (curvalue > step_size * (image_count - i - 1)) {
imageobj.src = rootImagePath + i + ".png";
break;

}
}

}
}

The ModulatePNG() function works by dividing the maximum value into N equal intervals, where N is the number
of images available for modulation. If the current value is in the first interval show the first image, if it's in the
second interval show the second image, if current value in the 3rd interval show the 3rd image, etc.

Call parseFloat() because if “curvalue” variable were non-numeric then comparisons to step_size would be done
alphabetically rather than numerically, which could break our modulation logic

The “step_size” variable is the interval, it is determined by dividing maximum value by number of images

Determine which interval our current value (“curvalue”) is in, then assign the image

A “break” statement tells the script to break out of the loop because we are done

Open data3 properties, click the ON UPDATE button, this time we use a ladder of “if-
then-else” statements instead of calling the ModulatePNG() function

If value is less than maximum value divided by the number of images (6 = 60/10) show image #0,
ELSE if value is less than 2 * max / # images show image #1, ELSE if value is less than 3 * max /
images show image #2, ELSE if value is less than 4 * max / # images show image #3, etc.

The logic in this script is perhaps easier to understand than code in the ModulatePNG()
function, but a tradeoff is there are more opportunities to make mistakes when copying
and pasting this block of code to use on another page, or when reversing the direction

Click OK to save changes

Click the green arrow to start a web session and let a few seconds go by

You should see the dampers modulating every 6 seconds, the sequence is:

* closed from 0 to 5 seconds,
* 10% open from 6 to 11 seconds,
* 20% open from 12 to 17 seconds,
* 30% open from 18 to 23 seconds, etc. up to
* 100% open from 54 to 59 seconds

The cooling coil should glow in this sequence:

* dark from 0 to 5 seconds,
* 10% glow from 6 to 11 seconds,
* 20% glow from 12 to 17 seconds,
* 30% glow from 18 to 23 seconds, etc.
...
* 100% glow from 54 to 59 seconds

TIP: the last argument to the ModulatePNG function is a true/false value to reverse the order
in which PNG graphics are modulated.

Modulating in forward direction (value=false) iterates from something_0.png to
something_X.png with values ranging from 0 to 100%, while modulating in reverse
(value=true) goes from something_X.png to something_0.png with 0 to 100% values

Next is an example of modulating images for a Hot Coil and Valve

First, setup Analog Output to provide a 2 to 10 volt signal (values from 51 to 255)

WebLink Elements for HTG Coil & Valve Example

tag0 – OPC data tag mapped to analog output

label0 – shows image # for HTG coil (0 to 9)
label1 – shows image number for Valve

label2 – display voltage
label3 – display % (0 to 100)

img0 – holds the valve
img1 – holds the coil

We use labels to show the voltage and the % as an example of re-using a single
data tag rather than adding more tags to show voltage and %. Want to minimize
data traffic between the OPC server and controller for best performance

You can download the example WebLink .WEB screen here:

www.asicontrols.com/var/training/how_to_animate_png/Hot_Coil_and_Valve.web

Add an OPC data tag (“tag0”) mapped to the OutputValue of the Analog Output

Scale the RAW input (51 to 255) to 0 to 10 because we will modulate using 10 images.
Format is ##.### to provide 3 significant digits

Copy the sample script (from Notes area below, or from Text version of this page) to
the clipboard and Paste it into the ON UPDATE event of the new OPC data tag

First get the value from the tag

Javascript parseFloat() function
removes any non-numeric characters

Limit value range to 0 to 10

Truncate any fractions, convert 10 to 9

Assign the valve image

Calculate the reverse image index

Assign the heating coil image

Display voltage and %

Display image numbers for clarity

Javascript toFixed() function does
rounding, but it does not do a good job,
so we use our own rounding function

You may see some
very slight differences
in the voltage signal
that are caused by
number rounding
issues in javascript

Some screen shots
taken while validating
this example

Our script prevents any
values exceeding 100%
or below 0%, even if the
values were somehow
out of range

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

